Introduction

Monte Carlo Method

Markov chain Monte Carlo

Density Estimation

Sensitivity indices

Introduction to Uncertainty Quantification

Olivier Le Maître¹ (with Omar Knio KAUST)

¹Centre de Mathématiques Appliquées, CNRS Ecole Polytechnique, Palaiseau, France https://perso.limsi.fr/olm/ olivier.le-maitre@polytechnique.edu

Ecole d'été de Mécanique Théorique, Quiberon

Objectives of the lecture

- Introduce and discuss Uncertainty Quantification problems
- Context, motivations, objectives of UQ analysis
- Monte-Carlo approach to serve as reference (and hands-on)

Some material of this lecture is taken from the book:

Spectral Methods for Uncertainty Quantification with applications in computational fluid dynamics with Omar Knio, Springer (2010).

Introduction

Monte Carlo Method

Markov chain Monte Carlo

Density Estimation

Sensitivity indices

Table of content

Introduction

- Simulations in science and engineering
- Errors in simulation
- Input-data uncertainty

Monte Carlo Method

- Monte Carlo estimation
- Improving Monte-Carlo estimates
- Monte Carlo sampling strategies

Markov chain Monte Carlo

- Overview
- Metropolis Algorithm
- Quality of the MCMC chain

Density Estimation

- Histogram Method
- Kernel Density estimation
- Smoothing parameter

5 Sensitivity indices

- Sobol-Hoeffding decomposition
- Global sensitivity analysis
- Monte-Carlo estimation of the SI

Markov chain Monte Carlo

Density Estimation

Sensitivity indices

Simulations in science and engineering

Simulations & models

Historically

- Experiments & Observations
- 2 Theories & Models
- ③ Use of models to produce predictions

Model predictions compared to new observations in order to validate the theory

Markov chain Monte Carlo

Density Estimation

Sensitivity indices

Simulations in science and engineering

Simulations & models

Development of computational tools

- Experiments & Observations
- 2 Theories & Models
- 3 Exploit generalization capability of (physical) models to produce new predictions Now needs new observations in oder to validate the computational model

Nowadays

- Experiments & Observations
- Theories & models
- Computational approaches & Simulations

All the three are complementary and strongly coupled

- Cross validation of simulations & experiments
- Different information and knowledge gained

Simulations in science and engineering

Some important concepts

VVUQ in simulation

- Verification: make sure that the simulation code is actually computing what we aim for (solving the targeted model)
- Validation: make sure that the simulation code can reproduce the targeted physics
- Uncertainty Quantification: make sure that the prediction fairly accounts for all sources of uncertainty in the definition of the numerical model.

UQ becomes more and more crucial as simulations gain in fidelity and resolution.

Other important concepts

- Calibration: procedure using observations to decide of the likely values of some model parameters
- Model error: remaining inadequacy between the (calibrated) model prediction and the physical truth.

Recall: [All models are wrong, some are useful (G. Box)]

Introduction	Monte Carlo Method
00000	000000000000000000000000000000000000000

Density Estimation

Sensitivity indices

Errors in simulation

Simulation framework

Basic ingredients

• Selection of a mathematical model:

retain the essential physical processes

Selection of a numerical method:

to solve the model equations

Define all input-data needed:

select a specific system in the whole model class

Introduction	Monte Carlo Method
00000	000000000000000000000000000000000000000

Density Estimation

Sensitivity indices

Errors in simulation

Simulation framework

Basic ingredients

Selection of a mathematical model:

retain the essential physical processes

Selection of a numerical method:

to solve the model equations

Define all input-data needed:

select a specific system in the whole model class

Simulation errors

- Model error: physical approximations, simplifications, idealization, ...
- Numerical errors: discretization, approximate solvers, finite arithmetics, ...
- Input-data error: boundary/initial conditions, model constants and parameters, external forcings, ...

Introduction	Monte Carlo Method
000000	000000000000000000000000000000000000000

Density Estimation

Sensitivity indices

Input-data uncertainty

Input Uncertainty

Sources of input-data uncertainty

- Inherent variability (e.g. industrial processes)
- Epistemic uncertainty (e.g. model constants)
- May not be fully reducible, even theoretically

Introduction	Monte Carlo Method
000000	000000000000000000000000000000000000000

Density Estimation

Sensitivity indices

Input-data uncertainty

Input Uncertainty

Sources of input-data uncertainty

- Inherent variability (e.g. industrial processes)
- Epistemic uncertainty (e.g. model constants)
- May not be fully reducible, even theoretically

Probabilistic framework

- Define an abstract probability space (Ω, A, dµ)
- Consider input-data *D* as a random quantity: $D(\omega), \ \omega \in \Omega$
- Simulation output S is random and on $(\Omega, \mathcal{A}, d\mu)$

Introduction	Monte Carlo Method
000000	000000000000000000000000000000000000000

Density Estimation

Sensitivity indices

Input-data uncertainty

Input Uncertainty

Sources of input-data uncertainty

- Inherent variability (e.g. industrial processes)
- Epistemic uncertainty (e.g. model constants)
- May not be fully reducible, even theoretically

Probabilistic framework

- Define an abstract probability space (Ω, A, dµ)
- Consider input-data *D* as a random quantity: $D(\omega), \ \omega \in \Omega$
- Simulation output *S* is random and on $(\Omega, \mathcal{A}, d\mu)$
- Data *D* and simulation output *S* are dependent random quantities (through the mathematical model *M*):

$$\mathcal{M}(S(\omega), D(\omega)) = 0, \quad \forall \omega \in \Omega.$$

Introduction	Monte Carlo Method	Ma
000000	000000000000000000000000000000000000000	00

Density Estimation

Sensitivity indices

Input-data uncertainty

Uncertainty Propagation

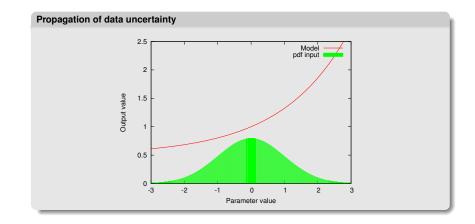
Propagation of data uncertainty Solution density Data density Solution density \mathbb{R} $\mathcal{M}(S, D) = 0$ \mathbb{R} \mathbb{R} $\mathcal{M}(S, D) = 0$ \mathbb{R}

Introduction	Monte Carlo Method	Markov chain Monte Carlo	Density Estimation	Se
000000	000000000000000000000000000000000000000	0000000	000000000000000000000000000000000000000	00

Sensitivity indices

Input-data uncertainty

Uncertainty Propagation

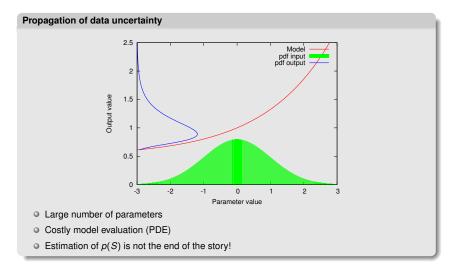


Introduction	Monte Carlo Method	Markov chain Monte Carlo	Density Estimation	Sensiti
000000	000000000000000000000000000000000000000	0000000	000000000000000000000000000000000000000	0000

Sensitivity indices

Input-data uncertainty

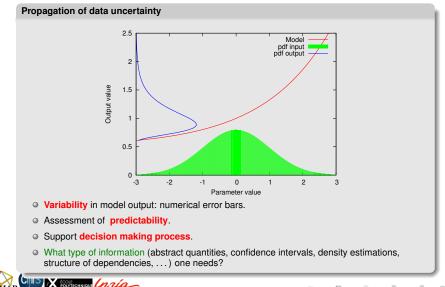
Uncertainty Propagation



Introduction	Monte Carlo Method	Markov chain Monte Carlo	Density Estimation	Sensitivity indices
000000	000000000000000000000000000000000000000	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000

Input-data uncertainty

Uncertainty Propagation



Introduction	Monte Carlo Method
00000	000000000000000000

Density Estimation

Sensitivity indices

Input-data uncertainty

UQ Methods

Deterministic methods

- Sensitivity analysis (adjoint based, AD, ...): local.
- Perturbation techniques: limited to low order and simple data uncertainty.
- Neumann expansions: limited to low expansion order.
- Moments method: closure problem (non-Gaussian / non-linear problems).

Simulation techniques

Monte-Carlo

Spectral Methods

Introduction	Monte Carlo Method
000000	000000000000000000000000000000000000000

Density Estimation

Sensitivity indices

Monte-Carlo

Input-data uncertainty

UQ Methods

Deterministic methods

Simulation techniques

Generate a sample set of data realizations and compute the corresponding sample set of model ouput.

- Use sample set based random estimates of abstract characterizations (moments, correlations, ...).
- Plus: Very robust and re-use deterministic codes: (parallelization, complex data uncertainty).
- Minus: slow convergence of the random estimates with the sample set dimension.

Spectral Methods

Introduction	Monte Carlo Method
00000	000000000000000000000000000000000000000

Density Estimation

Sensitivity indices

Input-data uncertainty

UQ Methods

Deterministic methods

Simulation techniques

Monte-Carlo

Spectral Methods

- Parameterization of the data with random variables (RVs).
- \perp projection of solution on the (L^2) space spanned by the RVs.
- Plus: arbitrary level of uncertainty, deterministic approach, convergence rate, information contained.
- Minus: parameterizations (limited # of RVs), adaptation of simulation tools (legacy codes), robustness (non-linear problems, non-smooth output, ...).
- Not suited for model uncertainty

Introduction

Monte Carlo Method

Markov chain Monte Carlo

Density Estimation

Sensitivity indices

Table of content

Introduction

- Simulations in science and engineering
- Errors in simulation
- Input-data uncertainty

Monte Carlo Method

- Monte Carlo estimation
- Improving Monte-Carlo estimates
- Monte Carlo sampling strategies

Markov chain Monte Carlo

- Overview
- Metropolis Algorithm
- Quality of the MCMC chain

Density Estimation

- Histogram Method
- Kernel Density estimation
- Smoothing parameter

5 Sensitivity indices

- Sobol-Hoeffding decomposition
- Global sensitivity analysis
- Monte-Carlo estimation of the SI

Introduction	Monte Carlo Method	Markov chain Monte Carlo	Density Estimation	Sensitivity indices	
Monte Carlo es	stimation				
Sample estimate					

Let $\Xi \ni \boldsymbol{\xi} \sim \mu(\boldsymbol{\xi})$ be a random quantify (variable, vector, field) and consider $F : \Xi \mapsto \mathbb{R}$, a real-valued random variable. We shall assume that $F \in L_2(\Xi, \mu)$:

$$\int_{\Xi} |F(\boldsymbol{\xi})|^2 d\mu(\boldsymbol{\xi}) = \mathbb{E}\left[F^2\right] < \infty.$$

In our context:

- ξ represents the random input/parameters of the model
- *F*(ξ) is a function of the model output
- We want to compute a statistic of the model output

$$\mathbb{E}\left[F\right] \doteq \int_{\Xi} F(\boldsymbol{\xi}) d\mu(\boldsymbol{\xi}).$$

To approximate $\mathbb{E}[F]$, the arithmetic mean is typically used:

$$\bar{F}_N = \frac{1}{N} \sum_{i=1}^N F(\boldsymbol{\xi}^{(i)}),$$

where the $\boldsymbol{\xi}^{(i)}$ are independent realizations of $\boldsymbol{\xi}$ (drawn from μ). The estimate \vec{F}_N is random

Introduction	Monte Carlo Method	Markov chain Monte Carlo	Density Estimation	Sensitivity indices	
Monte Carlo estimation					
Estimate convergence					

If the expectation ($\mathbb{E}[F]$) exists, the law of large numbers implies that the arithmetic means converges to the mathematical expectations

$$\overline{F}_N \stackrel{\rho}{\longrightarrow} \mathbb{E}\left[F\right] \text{ as } N \to \infty$$

Consequently, $\overline{F}_N \simeq \mathbb{E}[F]$ for large *N*.

If F has a finite variance $\mathbb{V}[F]$, the central limit theorem implies

$$\lim_{N \to \infty} \Pr\left\{x_1 < \frac{1}{\sqrt{N\mathbb{V}[F]}} \sum_{i=1}^{N} (F(\boldsymbol{\xi}^{(i)}) - \mathbb{E}[F]) < x_2\right\} = \frac{1}{\sqrt{2\pi}} \int_{x_1}^{x_2} \exp\left(-\frac{t^2}{2}\right) dt.$$

Introduction	Monte Carlo Method	Markov chain Monte Carlo	Density Estimation	Sensitivity indices
000000	000000000000000000000000000000000000000	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Monte Carlo estimation				

Monte Carlo error - I

Let $-x_1 = x_2 = x > 0$, it follows that

$$\lim_{N\to\infty} \Pr\left\{ \left| \mathbb{E}\left[F\right] - \frac{1}{N} \sum_{i=1}^{N} F(\boldsymbol{\xi}^{(i)}) \right| < x \sqrt{\frac{\mathbb{V}\left[F\right]}{N}} \right\} = \Phi(x)$$

where

$$\Phi(x) = \frac{2}{\sqrt{2\pi}} \int_0^x \exp\left(-\frac{t^2}{2}\right) dt \quad \text{is the probability integral}$$

When N is sufficiently large, we have

$$\Pr\left\{\left|\bar{F}_{N} - \mathbb{E}\left[F\right]\right| < x\sqrt{\frac{\mathbb{V}\left[F\right]}{N}}\right\} \approx \Phi(x)$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ● ● ●

This gives a whole variety of estimates, depending on x

Introduction	Monte Carlo Method	Markov chain Monte Carlo	Density Estimation	Sensitivity indices
000000	000000000000000000000000000000000000000	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Monte Carlo estimation				

Monte Carlo error - II

If a probability $0 < \beta < 1$ is given, then the root x_{β} of the equation $\Phi(x) = \beta$ can be found (e.g. from tables) It follows that

$$\Pr\left\{\left|\bar{F}_{N}-\mathbb{E}\left[F\right]\right| < x_{\beta}\sqrt{\frac{\mathbb{V}\left[F\right]}{N}}\right\} \approx \beta$$

The probable error, r_N , is the value for which

$$\Pr\left\{\left|\bar{F}_{N}-\mathbb{E}\left[F\right]\right| \leq r_{N}\right\} = \frac{1}{2} = \Pr\left\{\left|\bar{F}_{N}-\mathbb{E}\left[F\right]\right| \geq r_{N}\right\}$$

Thus,

$$r_N = x_{0.5}\sigma(F)N^{-1/2}$$

where

$$\sigma(F) \equiv \sqrt{\mathbb{V}[F]} \qquad x_{0.5} \approx 0.6745$$

Introduction	Monte Carlo Method		
000000	000000000000000000000000000000000000000		

Density Estimation

Sensitivity indices

Monte Carlo estimation

Remarks

When no information about the smoothness of the function is available, the probable error in plain MC is:

$$r_N = c \sqrt{\frac{\mathbb{V}\left[F\right]}{N}}$$

MC algorithms with reduced variance compared to plain MC are called efficient MC algorithms. Techniques used to achieve such reduction are called variance reduction techniques. Selected approaches are outlined in the following.

Markov chain Monte Carlo

Density Estimation

Sensitivity indices

Improving Monte-Carlo estimates

Separation of Principal Part

Consider again $\xi \in \Xi$ with distribution μ and $F \in L_2(\Xi, \mu)$. Suppose we can find $H \in L_2(\Xi, \mu)$ close to *F*, such that

$$\|F-H\|_2 \equiv \mathbb{E}\left[|F-H|^2
ight] = \int_{\Xi} |F(\boldsymbol{\xi})-H(\boldsymbol{\xi})|^2 d\mu(\boldsymbol{\xi}) \leq \epsilon^2,$$

and $\mathbb{E}[H]$ is known.

Consider $\theta(\boldsymbol{\xi}) \doteq F(\boldsymbol{\xi}) - H(\boldsymbol{\xi}) + \mathbb{E}[H]$. Plain MC on θ' gives:

$$\overline{\theta}_{N} = \mathbb{E}[H] + \frac{1}{N} \sum_{i=1}^{N} \left[F(\boldsymbol{\xi}^{(i)}) - H(\boldsymbol{\xi}^{(i)}) \right]$$

Clearly, $\mathbb{E}\left[heta
ight] = \mathbb{E}\left[F
ight]$ and

$$\mathbb{V}\left[heta
ight] = \mathbb{E}\left[\left| heta - heta
ight|^2
ight] - \left(\mathbb{E}\left[heta
ight] - \mathbb{E}\left[heta
ight]
ight)^2 \leq \epsilon^2$$

- \Rightarrow probable error will be quite small if H predict well F. This idea is exploited in
 - surrogate variance reduction
 - reduce model variance reduction
 - multi-fidelity and multilevel MC methods

Markov chain Monte Carlo

Density Estimation

Sensitivity indices

Improving Monte-Carlo estimates

Integration on Subdomains

Suppose we can integrate F analytically for $\pmb{\xi} \in \Xi' \subset \Xi$

$$\int_{\Xi'} F(\boldsymbol{\xi}) d\mu(\boldsymbol{\xi}) = I' \quad \text{and} \quad \int_{\Xi'} d\mu(\boldsymbol{\xi}) = c, \quad 0 < c < 1.$$

Then

$$\mathbb{E}\left[F
ight] = \int_{\Xi\setminus\Xi'}F(oldsymbol{\xi})d\mu(oldsymbol{\xi}) + I'.$$

Define a random point $\boldsymbol{\xi}_* \in \boldsymbol{\xi} \setminus \boldsymbol{\xi}'$ with distribution $\mu_*(x) = \mu(x)/(1-c)$ and let

$$H(\boldsymbol{\xi}_*) \doteq I' + (1 - c)F(\boldsymbol{\xi}_*)$$

Clearly, $\mathbb{E}[H] = \mathbb{E}[F]$. Thus, we define the MC estimator:

$$\overline{H}_N = I' + rac{1-c}{N}\sum_{i=1}^N F(\boldsymbol{\xi}^{(i)}_*)$$

where $\boldsymbol{\xi}_*^{(i)}$ are independent realizations of $\boldsymbol{\xi}_*$. It can be shown that if $\mathbb{V}[F]$ exists, then

$$\mathbb{V}[H] \leq (1-c)\mathbb{V}[F]$$

Markov chain Monte Carlo

Density Estimation

Sensitivity indices

Improving Monte-Carlo estimates

Symmetrization of Integrand

Consider the case of $\Xi = [a, b]$ with **uniform distribution**. The plain MC approximation of $\mathbb{E}[F]$ would yield:

$$\bar{F}_N = \frac{1}{N} \sum_{i=1}^N F(\boldsymbol{\xi}^{(i)})$$

where $\boldsymbol{\xi}^{(l)}$ are independent realizations of $\boldsymbol{\xi} \in [a, b]$. Consider now the symmetric function

$$F_{s}(\boldsymbol{\xi}) = \frac{1}{2} \left[F(\boldsymbol{\xi}) + F(a+b-\boldsymbol{\xi}) \right]$$

Clearly, $\mathbb{E}[F_s] = 2\mathbb{E}[F]$. Then, we consider the MC estimate

$$\tilde{F}_{sN} = \frac{1}{2N} \sum_{i=1}^{N} \left[F(\xi^{(i)}) + F(a+b-\xi^{(i)}) \right]$$

One can show that if $F : [a, b] \mapsto \mathbb{R}$ is monotonic, then $\mathbb{V}[F_s] \leq \mathbb{V}[F]/2$. The result generalizes to non-monotonic functions under mild conditions.

Markov chain Monte Carlo

Density Estimation

Sensitivity indices

Improving Monte-Carlo estimates

Importance Sampling – I

Suppose that he distribution μ has a density ρ :

$$\mathbb{E}_{
ho}[F] = \int_{\Xi} F(\boldsymbol{\xi})
ho(\boldsymbol{\xi}) d\boldsymbol{\xi}$$

Using the estimator

$$\bar{F}_N = \frac{1}{N} \sum_{i=1}^N F(\boldsymbol{\xi}^{(i)}),$$

we have

$$v_N \equiv \mathbb{V}\left[\bar{F}_N\right] = \frac{1}{N^2} \sum_{i=1}^N \left[F(\boldsymbol{\xi}^{(i)}) - \bar{F}_N\right]^2$$

and for N large

$$\frac{\bar{F}_N - \mathbb{E}_{\rho}[F]}{\sqrt{v_m}} \approx N(0, 1).$$

The importance sampling uses samples $\xi^{(1)}, \ldots, \xi^{(N)}$ from an alternative distribution ρ_* and the formula

$$\mathbb{E}_{\rho}[F] = \int_{\Xi} \frac{F(\boldsymbol{\xi})\rho(\boldsymbol{\xi})}{\rho_{*}(\boldsymbol{\xi})} g(\boldsymbol{\xi}) d\boldsymbol{\xi} = \mathbb{E}_{\rho_{*}}\left[\frac{F\times\rho}{\rho_{*}}\right].$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	Monte Carlo Method	Markov chain Monte Carlo	Density Estimation	Sensitivity indices	
Improving Monte-Carlo estimates					
Importance Sampling – II					

The choice of ρ_* that minimizes the variance of the corresponding estimator is

$$\rho_*(\boldsymbol{\xi}) = \frac{|F(\boldsymbol{\xi})|\,\rho(\boldsymbol{\xi})}{\left|\int_{\Xi} F(\eta)\rho(\eta)d\eta\right|}.$$

This density is hard to evaluate because the denominator is essentially the unknown quantity. A practical alternative is to use the result as follows:

$$\frac{\sum_{i=1}^{N} F(\boldsymbol{\xi}^{(i)}) \rho(\boldsymbol{\xi}^{(i)}) / \rho_{*}(\boldsymbol{\xi}^{(i)})}{\sum_{i=1}^{N} \rho(\boldsymbol{\xi}^{(i)}) / \rho_{*}(\boldsymbol{\xi}^{(i)})} = \frac{\sum_{i=1}^{N} F(\boldsymbol{\xi}^{(i)}) \left| F(\boldsymbol{\xi}^{(i)}) \right|^{-1}}{\sum_{i=1}^{N} \left| F(\boldsymbol{\xi}^{(i)}) \right|^{-1}}$$

where the $\xi^{(l)} \sim \rho_* \propto |F|\rho$. Unfortunately, this estimator is biased and may exhibit severe instability.

To avoid this, we look for distribution ρ_* for which $|F|\rho/\rho_*$ is almost constant, with finite variance.

Although finite variance is not necessary for convergence of the last estimator, importance sampling performs poorly when $\mathbb{E}_{\rho}[\rho/\rho_*] = +\infty$, whether in terms of behavior (high amplitude jumps, instability of path of the average, slow convergence) or in comparison with direct MC.

Monte Carlo sampling strategies

Iso-probabilistic transformations

- Most computer languages propose pseudo-random number generators for the classical distributions
- Main characteristic : appearance of independence for the sequence and length
- Dedicated libraries (std-lib in C++) propose high quality generators for standard distributions (uniform, normal, exponential, Poisson, Bernoulli, ...)

Well characterized distributions over $\mathbb R$ can be achieved by mean of iso-probabilistic transformations

For higher dimensional sampling space, $\boldsymbol{\xi} = (\xi_1, \dots, \xi_d)$, fast sampling can be achieved **if the components** ξ_i **are independent**, otherwise more involved techniques (*e.g.* MCMC sampler) must be considered.

Monte Carlo sampling strategies

Latin Hypercube Sampling – I

Alternative ways to reduce the MC estimate error are based on controlled sampling to improve the covering of Ξ

Latin hypercube selects *n* different values from each of the *d* **iid rv's** ξ_1, \ldots, ξ_d according to the following procedure:

- The range of each variable is divided into n non-overlapping intervals having equal probability
- One value from each interval is selected at random with respect to the probability density in the interval
- The n values thus obtained for \$1 are paired in a random manner (equally likely combinations) with the n values of \$2
- These n pairs are combined in a random manner with the n values of ξ₃ to form n triplets, and so on, until n d-tuplets are formed.

Markov chain Monte Carlo

Density Estimation

Sensitivity indices

Monte Carlo sampling strategies

Latin Hypercube Sampling – II

 $\rho(\boldsymbol{\xi}) = \rho_1(\xi_1) \dots \rho_d(\xi_d).$

It is convenient to think of the LH sample (or any random sample of size *n*) as forming an $(n \times d)$ matrix of input where the *j*-th row contains the specific values of each of the *d* input variables ξ_i to be used on the *j*-th realization of the input (*j*-th simulation)

The pairing is typically done by associating a random permutation of the first *n* integers with each input variable. The permutations ensure that **no variable is taken twice from the same interval for every dimension**.

Consider a 2D example, where we are interested in generating a LH with 5 samples The ranges of ξ_1 and ξ_2 are first divided into 5 equal probability intervals We next consider two random permutations of the integers $\{1, 2, 3, 4, 5\}$, say:

- Permutation 1: (3, 1, 5, 2, 4)
- Permutation 2: (2, 4, 1, 3, 5)

Then the resulting LHS would be

Sample	Interval used for ξ_1	Interval used for ξ_2
1	3	2
2	1	4
3	5	1
4	2	3
5	4	5

Monte Carlo sampling strategies

Latin Hypercube Sampling – III

Elaborate LHS algorithms have been developed, particularly to incorporate key ingredients to ensure proper performance. These include:

- uniform random permutations a uniform random permutation of 1 to n is one in which all n! possible orderings have the same probability
- imposing pairing restrictions to avoid or minimize correlations between statistically independent quantities

Sophisticated software tools implementing powerful LHS algorithms are widely available, including MATLAB.

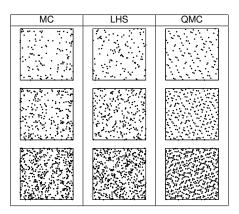
Markov chain Monte Carlo

Density Estimation

Sensitivity indices

Monte Carlo sampling strategies

Comparison of samplin methods



- Quasi-Monte Carlo (deterministic sequence)
- Convergence rate
- Error estimate
- Optimal sampling strategy

Introduction

Monte Carlo Method

Markov chain Monte Carlo

Density Estimation

Sensitivity indices

Table of content

Introduction

- Simulations in science and engineering
- Errors in simulation
- Input-data uncertainty

Monte Carlo Method

- Monte Carlo estimation
- Improving Monte-Carlo estimates
- Monte Carlo sampling strategies

Markov chain Monte Carlo

- Overview
- Metropolis Algorithm
- Quality of the MCMC chain

Density Estimation

- Histogram Method
- Kernel Density estimation
- Smoothing parameter

5 Sensitivity indices

- Sobol-Hoeffding decomposition
- Global sensitivity analysis
- Monte-Carlo estimation of the SI

Introduction	Monte Carlo Method	Markov chain Monte Carlo	Density Estimation	Sensitivity indices
Overview				
Background				

- Markov chain Monte Carlo (MCMC) methods: class of algorithms aimed at simulating direct draws from some complex distribution of interest.
- Origin of the name: one uses the previous sample values to randomly (Monte Carlo) generate the next sample value, thus creating a Markov chain.
- A Markov chain is indeed defined as a process where the transition probability between the current and following state is only a function of the current state.
- Many different flavors of generating a Markov Chain. Focus on Metropolis-Hastings algorithm: a random walk using a proposal density and a method for accepting/rejecting proposed moves.

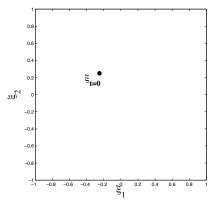
Introduction	Monte Carlo Method	Markov chain Monte Carlo	Density Estimation	Sensitivity indices
Overview				

MCMC: features

- The states of the chain after a large number of steps are used as samples of the desired distribution.
- The quality of the sample improves as a function of the number of steps.
- The more difficult problem is to determine how many steps are needed to converge to the stationary distribution within an acceptable error: usually one needs at least ~ 10000 samples.
- A good chain is one that has rapid mixing, i.e. the stationary distribution is reached quickly starting from an arbitrary position and the target probability is explored well and efficiently.
- A common application of these algorithms is for numerically calculating multi-dimensional integrals.
- Let's look in detail at the Metropolis algorithm and how to generate samples from a certain distribution.

Introduction	Monte Carlo Method	Markov chain Monte Carlo	Density Estimation	Sensitivity indices		
Metropolis Alg	Metropolis Algorithm					
Metropolis (MH)						

- MH algorithm can draw samples from a target probability distribution, π, requiring only the knowledge of a function proportional to the target PDF.
- It uses a proposal distribution, P, to generate (Markov chain) candidates that are accepted or rejected according to a certain rule. Let P be a Gaussian for simplicity.
- 1 Let $\boldsymbol{\xi}_{t=0}$ be an initial guess for a 2D problem.



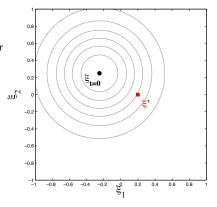
500

1

Introduction	Monte Carlo Method	Markov chain Monte Carlo	Density Estimation	Sensitivity indices	
Metropolis Algorithm					
Metropolis (MH)					

- MH algorithm can draw samples from a target probability distribution, π, requiring only the knowledge of a function proportional to the target PDF.
- It uses a proposal distribution, P, to generate (Markov chain) candidates that are accepted or rejected according to a certain rule. Let P be a Gaussian for simplicity.

 Draw a candidate ξ' from a Gaussian centered on the currer state: ξ' ~ N(ξ₀, Cov) where Cov is chosen a priori.



・ロト ・ 同 ト ・ 三 ト ・ 三 ト

3

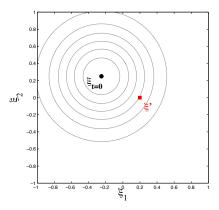
500

Introduction	Monte Carlo Method	Markov chain Monte Carlo	Density Estimation	Sensitivity indices		
Metropolis Alg	Metropolis Algorithm					
Metropoli	is (MH)					

- MH algorithm can draw samples from a target probability distribution, π, requiring only the knowledge of a function proportional to the target PDF.
- It uses a proposal distribution, P, to generate (Markov chain) candidates that are accepted or rejected according to a certain rule. Let P be a Gaussian for simplicity.

3 Calculate the ratio:

$$r = \frac{\pi(\boldsymbol{\xi}')}{\pi(\boldsymbol{\xi}_0)}$$



SQR

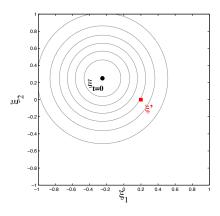
Introduction	Monte Carlo Method	Markov chain Monte Carlo	Density Estimation	Sensitivity indices		
Metropolis Alg	Metropolis Algorithm					
Metropoli	is (MH)					

- MH algorithm can draw samples from a target probability distribution, π, requiring only the knowledge of a function proportional to the target PDF.
- It uses a proposal distribution, P, to generate (Markov chain) candidates that are accepted or rejected according to a certain rule. Let P be a Gaussian for simplicity.

3 Calculate the ratio:

$$r=\frac{\pi(\boldsymbol{\xi}')}{\pi(\boldsymbol{\xi}_0)},$$

4 Draw a random number $\alpha \sim U(0, 1)$.



イロト イ理ト イヨト イヨト

= 900

Introduction	Monte Carlo Method	Markov chain Monte Carlo	Density Estimation	Sensitivity indices	
Metropolis Algorithm					
Metropol	is (MH)				

- MH algorithm can draw samples from a target probability distribution, π, requiring only the knowledge of a function proportional to the target PDF.
- It uses a proposal distribution, P, to generate (Markov chain) candidates that are accepted or rejected according to a certain rule. Let P be a Gaussian for simplicity.

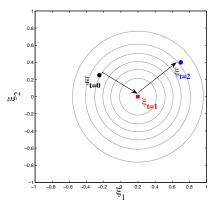
3 Calculate the ratio:

$$T = \frac{\pi(\boldsymbol{\xi}')}{\pi(\boldsymbol{\xi}_0)},$$

- 4 Draw a random number $\alpha \sim U(0, 1)$.
- 5 Chain moves (i.e. candidate is accepted/rejected) according to:

$$\boldsymbol{\xi}_1 = \begin{cases} \boldsymbol{\xi}' & \text{if } \alpha < r, \\ \boldsymbol{\xi}_0 & \text{otherwise} \end{cases}$$

6 Repeat the loop.

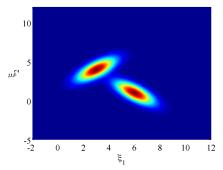


3

SQR

Introduction	Monte Carlo Method	Markov chain Monte Carlo	Density Estimation	Sensitivity indices	
Metropolis Algorithm					
Example					

- Suppose that you want to test MCMC to sample a certain bimodal PDF, π, which is proportional to a mixture of two bivariate gaussians:
 π ∝ 0.5 * N(μ₁, Σ₁) + 0.5 * N(μ₂, Σ₂).
- Method: Metropolis algorithm.



What about sensitivity to n and proposal amplitude?

Introduction	Monte Carlo Method	Markov chain Monte Carlo	Dens
000000	000000000000000000000000000000000000000	00000000	000

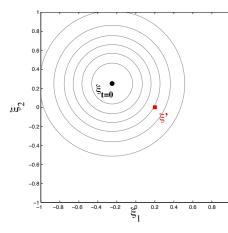
Density Estimation

Sensitivity indices

Metropolis Algorithm

Example

- 1 Choose the proposal distribution: e.g. a gaussian with covariance: $\Sigma_{prop} = 0.1 * I_2$.
- 2 Choose a starting point: $\boldsymbol{\xi}_0 = \{10, 10\}.$
- 3 Run the machinery for *n* steps: draw a candidate, accept/reject, repeat loop.



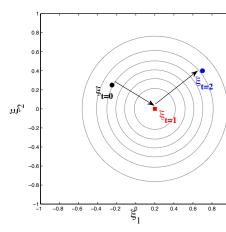
What about sensitivity to n and proposal amplitude?

Introduction	Monte Carlo Method	Markov chain Monte Carlo	Density Estimation	Sensitivity indices
000000	000000000000000000000000000000000000000	00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Metropolis Algo	orithm			

Example

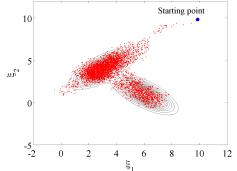
- 1 Choose the proposal distribution: e.g. a gaussian with covariance: $\Sigma_{\text{prop}} = 0.1 * I_2$.
- 2 Choose a starting point: $\boldsymbol{\xi}_0 = \{10, 10\}.$
- 3 Run the machinery for *n* steps: draw a candidate, accept/reject, repeat loop.

What about sensitivity to n and proposal amplitude?



▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶ ▲□

Introduction	Monte Carlo Method	Markov chain Monte Carlo	Density Estimation	Sensitivity indices		
Metropolis Alg	Metropolis Algorithm					
Example						



イロト イ理ト イヨト イヨト

200

- 4 Plot the *n* samples (this case n = 5000)
- The proposal amplitude, 0.1, must be varied to obtain mixing and fast convergence.
- The number of samples, *n*, must be as large as possibile to have a reliable statistics.

What about sensitivity to n and proposal amplitude?

Introduction	Monte Carlo Method
000000	000000000000000000000000000000000000000

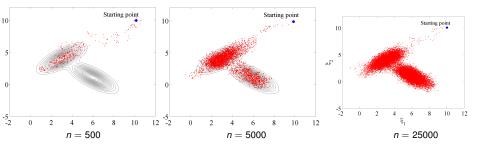
Density Estimation

Sensitivity indices

Quality of the MCMC chain

Sensitivity to number of steps

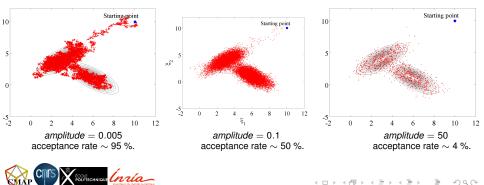
- The proposal distribution has covariance: $\Sigma_{\text{prop}}=0.1*I_2.$
- Results for 3 different values of total steps n = 500, 5000 and 25000.
- The larger *n*, the better the approximation.



Introduction	Monte Carlo Method	Markov chain Monte Carlo	Density Estimation	Sensitivity indices	
000000	00000000000000000	00000000	00000000000000000	000000000000000000000000000000000000000	
Quality of the MCMC chain					

Sensitivity to proposal amplitude

- The proposal amplitude must be tuned to obtain good exploration of the space and fast convergence of the chain toward the high-probability regions.
- Results shown for 0.005 * I₂, 0.1 * I₂ and 50 * I₂.
- The smaller the proposal amplitude, the larger the number of the accepted moves.
- Large proposals lead to small acceptance and slow exploration of the space.
- Ideally, the acceptance rate should be between 30 to 60%.



Introduction	Monte Carlo Method
000000	000000000000000000000000000000000000000

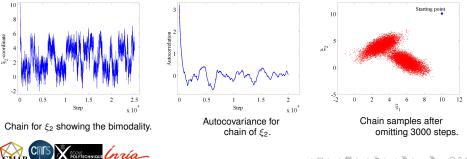
Density Estimation

Sensitivity indices

Quality of the MCMC chain

Sensitivity to proposal amplitude

- To evaluate the mixing properties of a chain:
 - visually should look like a white noise.
 - the autocovariance should be rapidly decaying.
 - the acceptance rate should be 30 to 60%.
- Before computing statistics, the initial steps before convergence should be dropped: these steps are referred to as "burn-in" period.
- The burn-in period is estimated from the autocorrelation as the step at which it drops to and becomes oscillatory around zero: in this case it is about 3000 steps.



Introduction

Monte Carlo Method

Markov chain Monte Carlo

Density Estimation

Sensitivity indices

Table of content

Introduction

- Simulations in science and engineering
- Errors in simulation
- Input-data uncertainty

Monte Carlo Method

- Monte Carlo estimation
- Improving Monte-Carlo estimates
- Monte Carlo sampling strategies

Markov chain Monte Carlo

- Overview
- Metropolis Algorithm
- Quality of the MCMC chain

Density Estimation

- Histogram Method
- Kernel Density estimation
- Smoothing parameter

5 Sensitivity indices

- Sobol-Hoeffding decomposition
- Global sensitivity analysis
- Monte-Carlo estimation of the SI

Introduction	Monte Carlo Me
000000	000000000

Sampling strategies

- Given a vector of QoI (quantity of interest) S ∈ ℝⁿ, we would like to obtain probabilistic information regarding S.
- We have seen that the mean and covariance of S are given by

$$\mathbb{E}[S] = S_0, \quad \mathbb{E}\left[SS^T\right] \in \mathbb{R}^{n \times n}.$$

- Higher moments can also be derived, in particular coefficient of variation, skewness & flatness factors,...
- No direct mean to assess probabilities of events, for instance

$$P(a \le S_i < b), P(S > s), P(\{S_i < a\} \cap \{S_j > b\}), \dots$$

• Such probabilities must be estimated by sampling strategies.

Density Estimation

Sensitivity indices

Sampling strategies

● Assume we want to estimate the probability of the event S ∈ R:

$$P(S \in \mathcal{R}).$$

We can apply the generic recipe:

- **1** generate a sample set $\{\boldsymbol{\xi}^{(i)}, i = 1, ..., M\}$ of $\boldsymbol{\xi}$ where $\boldsymbol{\xi}^{(i)} \sim p_{\boldsymbol{\xi}}$,
- 2 construct the sample set $\{S^{(i)} \doteq S(\xi^{(i)}), i = 1, ..., M\}$ solving the model,
- estimate the probability using the empirical estimator by

$$P(S \in \mathcal{R}) = \lim_{M \to \infty} \frac{\#\text{of samples } S^{(i)} \in \mathcal{R}}{M}$$

In other words, we make use of the relative frequency to estimate probabilities.

- This approach raises several concerns, regarding convergence, estimation of low probability events, ...
- Observe: the empirical estimates are random variables, since they are based on a random sample set.

muououom	Int	rod	uctio	n
000000				

Density Estimation

Sensitivity indices

Density estimation

• We denote $\mathbb S$ the sample space, that is P(S $\in \mathbb S)=$ 1, and assume that S has a (smooth) density denoted π

$$\pi: \mathbb{S} \mapsto \mathbb{R}_+, \quad \int_{\mathbb{S}} \pi(s) ds = 1$$

• The question becomes:

how to approximate π from a sample set $\{S^{(i)}\}$?

ntroduction Monte Carlo Method

d Markov chain Monte Carlo

Density Estimation

Sensitivity indices

Histogram Method

The simplest density estimation: histogram method

- Consider the 1-d case first, that is n = 1 and $\mathbb{S} \subset \mathbb{R}$.
- We partition S into uniform bins of size h.
- Let $b_i = [x_i h/2, x_i + h/2)$ be the bin centered on x_i , and define

$$p_i = rac{\# ext{of samples } \mathcal{S}^{(i)} \in b_i}{M},$$

the relative frequency of the *i*-th bin.

- **Observe:** $\sum_i p_i = 1$.
- The density is then estimated by

$$\pi(s) pprox \pi_h(s) = rac{1}{h} \sum_i
ho_i \mathbb{I}_{b_i}(s).$$

• π_h is a piecewise constant approximation of π , satisfying

$$\forall s \in \mathbb{S}, \pi_h(s) \geq 0, \quad \int \pi_h(s) ds = \sum_i \int_{b_i} \pi_h(s) ds = \sum_i \frac{1}{h} p_i h = 1.$$

Introduction	Monte Carlo Method
000000	000000000000000000000000000000000000000

Density Estimation

Sensitivity indices

Histogram Method

Histogram method

- The histogram method is simple and intuitive.
- It can be easily extended to S ⊂ ℝⁿ, using for instance hyper-rectangular bins or any other partition of S.

But:

- the approximation depends on the position (centroids x_i) of the bins (orientation too),
- it is susceptible to artifacts (choice of the bins size, outliers,...),
- o control of accuracy is difficult in high dimension.

A less arbitrary and more robust approach is needed.

Introduction	Monte Carlo Method	Markov chain Monte
000000	000000000000000000000000000000000000000	0000000

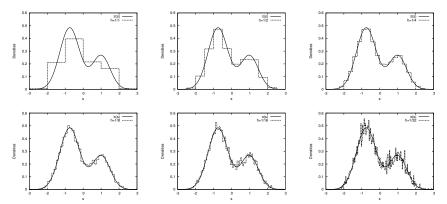
Density Estimation

Sensitivity indices

Histogram Method

Histogram method

Example : Gaussian mixture for 5000 samples



Carlo

Introduction	Monte Carlo Method	Markov chain Monte Carlo
000000	000000000000000000000000000000000000000	0000000

Density Estimation

Sensitivity indices

Kernel Density estimation

Kernel density estimation (KDE)

• Recall the definition of the probability that *S* falls in some region *R*:

$$\mathrm{P}(\mathrm{S} \in \mathcal{R}) = \int_{\mathcal{R}} \pi(s) ds \doteq \mathrm{P}_{\mathcal{R}}.$$

 Then, if we have M vectors independently drawn at random from π, the probability that k of these vectors fall in R is

$$\mathbf{P}(\mathbf{k}|\mathbf{M}) = \begin{pmatrix} \mathbf{M} \\ \mathbf{k} \end{pmatrix} \mathbf{P}_{\mathcal{R}}^{k} (1 - \mathbf{P}_{\mathcal{R}})^{M-k}.$$

• It can be shown that the mean and variance of the ratio k/M are

$$\mathbb{E}[k/M] = P_{\mathcal{R}}, \quad \mathbb{V}[k/M] = \mathbb{E}\left[\left(\frac{k}{M} - P_{\mathcal{R}}\right)^{2}\right] = \frac{P_{\mathcal{R}}(1 - P_{\mathcal{R}})}{M}.$$

Therefore, as $M \to \infty$ becomes large the mean fraction of the points falling within $\mathcal R$ is (as one would expect)

$$\frac{k}{M} = P_{\mathcal{R}}$$

・ロト ・ 理 ト ・ 注 ト ・ 注 ・ の へ ()・

Introduction	Monte Carlo Method
000000	000000000000000000000000000000000000000

Density Estimation

Sensitivity indices

Kernel Density estimation

Non-parametric density estimation

• If ${\cal R}$ is small enough, π should not vary much over ${\cal R}$ and one would expect

$$\mathbb{P}_{\mathcal{R}} = \int_{\mathcal{R}} \pi(s') ds' \approx \pi(s) V,$$

 $\forall s \in \mathcal{R}$ and where *V* is the volume of \mathcal{R} .

• Consequently, we shall consider the approximation

$$\pi(s\in\mathcal{R})\approx rac{k}{MV}.$$

Of course, we want V small enough for the constant approximation to be valid, and we need M large enough for the limit k/M to make sense. Clearly, M should increase as V is decreased. This calls for a compromise.

Introduction	Monte Carlo Method
000000	000000000000000000000000000000000000000

Density Estimation

Sensitivity indices

Kernel Density estimation

Parzen window

Consider

$$K(u) = egin{cases} 1 & ext{if } |u| < 1/2, \ 0 & ext{otherwise}. \end{cases}$$

(if *n* dimensions, K(u) = 1 if $|u_j| < 1/2$ for j = 1, ..., n). In words, K = 1 for *u* in the **unit hypercube centered at the origin**. This function is known as the **Parzen window**.

The quantity

$$K\left(\frac{s-S^{(i)}}{h}\right)$$

is equal to 1 if the random sample $S^{(i)}$ is inside the hypercube of side *h* centered at *s*.

• The total number of samples inside this hypercube is

$$k = \sum_{i=1}^{M} K\left(\frac{s-S^{(i)}}{h}\right).$$

Introduction	Monte Carlo Method
000000	000000000000000000000000000000000000000

Density Estimation

Sensitivity indices

Kernel Density estimation

Parzen window

Consider

$$K(u) = egin{cases} 1 & ext{if } |u| < 1/2, \ 0 & ext{otherwise.} \end{cases}$$

(if *n* dimensions, K(u) = 1 if $|u_j| < 1/2$ for j = 1, ..., n). In words, K = 1 for *u* in the **unit hypercube centered at the origin**. This function is known as the **Parzen window**.

1

The quantity

$$K\left(\frac{s-S^{(i)}}{h}\right)$$

is equal to 1 if the random sample $S^{(i)}$ is inside the hypercube of side *h* centered at *s*.

Consequently, we shall consider the approximation

$$\pi_{\textit{KDE}}(s) = rac{1}{Mh^n} \sum_{i=1}^M K\left(rac{s-S^{(i)}}{h}
ight).$$

Parzen Window resembles histogram, except bin are centered on s.

Introduction	Monte Carlo Method	Markov chain Monte Carlo	Density Es
000000	000000000000000000000000000000000000000	0000000	000000

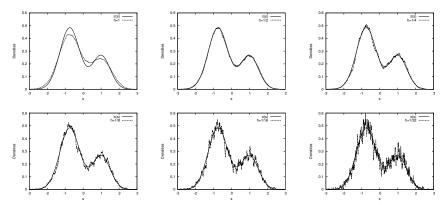
Density Estimation

Sensitivity indices

Kernel Density estimation

KDE using Parzen window

Example : Gaussian mixture for 5000 samples



Introduction	Monte Carlo Method	Markov chain Monte Carlo	Density Estimation	Sensitivity indices
Kernel Density estimation				

Role of the kernel

To understand the role of K, compute the expectation of π_{KDE}

$$\mathbb{E}\left[\pi_{\mathsf{KDE}}(s)\right] = \frac{1}{h^n} \frac{1}{M} \sum_{i=1}^M \mathbb{E}\left[\mathsf{K}\left(\frac{s-\mathsf{S}^{(i)}}{h}\right)\right] = \frac{1}{h^n} \int_{\mathbb{S}} \mathsf{K}\left(\frac{s-s'}{h}\right) \pi(s') ds'.$$

 $\mathbb{E}[\pi_{KDE}(s)]$ is equal to the convolution of the true density (π) with the kernel *K*. As $h \rightarrow 0$, the kernel goes to δ (Dirac delta-function), in the sense of distribution:

$$\pi_{\text{KDE}}(s) \rightarrow \pi(s).$$

• This observation paves the way to better choice of kernel, in particular using smooth functions K(s), with the property

$$\int K(s)ds=1.$$

*ロ * * @ * * ミ * ミ * ・ ミ * うへで

• Typically $K : \mathbb{S} \mapsto \mathbb{R}$ are chosen as radially symmetric, positive and unimodal.

Introduction	Monte Carlo Method	Markov chain Monte Carlo	Density Estimation	Sensitivity indices
000000	000000000000000000000000000000000000000	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Kernel Density estimation				

Role of the kernel

To understand the role of K, compute the expectation of π_{KDE}

$$\mathbb{E}\left[\pi_{\textit{KDE}}(s)\right] = \frac{1}{h^n} \frac{1}{M} \sum_{i=1}^M \mathbb{E}\left[K\left(\frac{s-S^{(i)}}{h}\right)\right] = \frac{1}{h^n} \int_{\mathbb{S}} K\left(\frac{s-s'}{h}\right) \pi(s') ds'.$$

 $\mathbb{E}[\pi_{KDE}(s)]$ is equal to the convolution of the true density (π) with the kernel *K*. As $h \to 0$, the kernel goes to δ (Dirac delta-function), in the sense of distribution:

$$\pi_{KDE}(s) \rightarrow \pi(s).$$

 This observation paves the way to better choice of kernel, in particular using smooth functions K(s), with the property

$$\int K(s)ds=1.$$

A common choice is Gaussian Kernel:

$$K(s) = \frac{1}{(2\pi)^{n/2}} \exp\left[-(s^T s)/2\right].$$

Introduction	Monte Carlo Method	Markov chain Monte Carlo	Density E
000000	000000000000000000000000000000000000000	0000000	000000

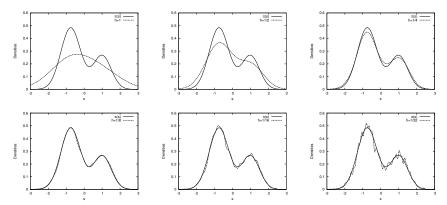
Density Estimation

Sensitivity indices

Kernel Density estimation

KDE with Gaussian kernel

Example : Gaussian mixture for 5000 samples



Introduction	Monte Carlo Method
000000	000000000000000000000000000000000000000

Density Estimation

Sensitivity indices

Smoothing parameter

Smoothing parameter

$$\pi_{KDE}(s) = rac{1}{Mh^n} \sum_{i=1}^M K\left(rac{s-S^{(i)}}{h}
ight).$$

It remains to fix h (bandwidth, core-radius), which is a critical parameter:

- Iarge h: too much smoothing,
- small h: too many spikes.

The best *h* minimizes the error between the estimated and true densities. Using **mean square error measure**, we get

$$\epsilon^2 \doteq \mathbb{E}\left[\left(\pi_{\textit{KDE}}(m{s}) - \pi(m{s})
ight)^2
ight] = \mathbb{E}\left[\pi_{\textit{KDE}}(m{s}) - \pi(m{s})
ight]^2 + \mathbb{V}\left[\pi_{\textit{KDE}}(m{s})
ight].$$

Bias-variance tradeoff:

- Iarge h: reduces variance but increase bias
- small h: reduces bias but increase variance

How to pick h?

Introduction	Monte Carlo Method
000000	000000000000000000000000000000000000000

Density Estimation

Sensitivity indices

Smoothing parameter

Setting of the smoothing parameter

• A priori selection. Assumes that the true distribution π is Gaussian, and *K* is the Gaussian kernel, one can get an explicit minimizer for ϵ :

$$h_{opt} = 1.06 \sigma M^{-1/5},$$

where σ is the standard deviation of the distribution π .

• Data based selection. For general distributions, better results are obtained using

$$h_{data} = 0.9AM^{-1/5}, \quad A = \min\left(\sigma, \frac{\text{IQR}}{1.34}\right),$$

where IQR is the inter-quantile range, defined as the difference between the 75% and 25% percentiles.

Introduction	Monte Carlo Method	Markov chain Monte Carlo
000000	00000000000000000	0000000

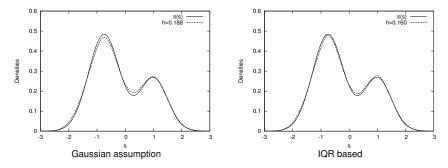
Density Estimation

Sensitivity indices

Smoothing parameter

KDE with Gaussian kernel

Example : Gaussian mixture for 5000 samples



Closing remarks:

- This ideas can be extended to the multivariate case (isotropic kernels)
- Use of variable h to adapt local concentration of observations
- Many implementations available (MATLAB).

Introduction

Monte Carlo Method

Markov chain Monte Carlo

Density Estimation

Sensitivity indices

Table of content

Introduction

- Simulations in science and engineering
- Errors in simulation
- Input-data uncertainty

Monte Carlo Method

- Monte Carlo estimation
- Improving Monte-Carlo estimates
- Monte Carlo sampling strategies

Markov chain Monte Carlo

- Overview
- Metropolis Algorithm
- Quality of the MCMC chain

Density Estimation

- Histogram Method
- Kernel Density estimation
- Smoothing parameter

5 Sensitivity indices

- Sobol-Hoeffding decomposition
- Global sensitivity analysis
- Monte-Carlo estimation of the SI

Introduction	Monte Carlo Method
000000	000000000000000000000000000000000000000

Density Estimation

Sensitivity indices

Sobol-Hoeffding decomposition

Assumptions

L₂ functions over unit-hypercubes

Let $L_2(\mathcal{U}^d)$ be the space of real-valued **squared-integrable functions** over the *d*-dimensional hypercube \mathcal{U} :

$$f: \boldsymbol{x} \in \mathcal{U}^d \mapsto f(\boldsymbol{x}) \in \mathbb{R}, \quad f \in L_2(\mathcal{U}^d) \Leftrightarrow \int_{\mathcal{U}^d} f(\boldsymbol{x})^2 d\boldsymbol{x} < \infty.$$

 $L_2(\mathcal{U}^d)$ is equipped with the inner product $\langle \cdot, \cdot \rangle$,

$$\forall f, g \in L_2(\mathcal{U}^d), \quad \langle u, v \rangle := \int_{\mathcal{U}^d} f(\boldsymbol{x}) g(\boldsymbol{x}) d\boldsymbol{x},$$

and norm $\|\cdot\|_2$,

$$\forall f \in L_2(\mathcal{U}^d), \quad \|f\|_2 := \langle f, f \rangle^{1/2}.$$

Introduction	Monte Carlo Method
000000	000000000000000000000000000000000000000

Density Estimation

Sensitivity indices

Sobol-Hoeffding decomposition

Assumptions

L₂ functions over unit-hypercubes

Let $L_2(\mathcal{U}^d)$ be the space of real-valued squared-integrable functions over the *d*-dimensional hypercube \mathcal{U} :

$$f: \mathbf{x} \in \mathcal{U}^d \mapsto f(\mathbf{x}) \in \mathbb{R}, \quad f \in L_2(\mathcal{U}^d) \Leftrightarrow \int_{\mathcal{U}^d} f(\mathbf{x})^2 d\mathbf{x} < \infty.$$

NB: all subsequent developments immediately extend to product-type situations, where

$$\boldsymbol{x} \in \boldsymbol{A} = \boldsymbol{A}_1 \times \cdots \times \boldsymbol{A}_d \subseteq \mathbb{R}^d$$

and weighted spaces $L_2(A, \rho)$,

$$\rho: \mathbf{x} \in \mathbf{A} \mapsto \rho(\mathbf{x}) \geq 0, \quad \rho(\mathbf{x}) = \rho_1(x_1) \times \cdots \times \rho_d(x_d).$$

(e.g.: ρ is a pdf of a random vector **x** with mutually independent components.)

Introduction	Monte Carlo Method
000000	000000000000000000000000000000000000000

Density Estimation

Sensitivity indices

Sobol-Hoeffding decomposition

Ensemble notations

Let $\mathfrak{D} = \{1, 2, \dots, d\}$. Given $i \subseteq \mathfrak{D}$, we denote $i_{\sim} := \mathfrak{D} \setminus i$ its complement set in \mathfrak{D} , such that

 $\mathfrak{i}\cup\mathfrak{i}_{\sim}=\mathfrak{D},\quad\mathfrak{i}\cap\mathfrak{i}_{\sim}=\emptyset.$

For instance

•
$$i = \{1, 2\}$$
 and $i_{\sim} = \{3, \ldots, d\},\$

• $\mathfrak{i} = \mathfrak{D}$ and $\mathfrak{i}_{\sim} = \emptyset$.

Introduction	Monte Carlo Method
000000	000000000000000000000000000000000000000

Density Estimation

Sobol-Hoeffding decomposition

Ensemble notations

Let $\mathfrak{D} = \{1, 2, \dots, d\}$. Given $i \subseteq \mathfrak{D}$, we denote $i_{\sim} := \mathfrak{D} \setminus i$ its complement set in \mathfrak{D} , such that

$$\mathfrak{i} \cup \mathfrak{i}_{\sim} = \mathfrak{D}, \quad \mathfrak{i} \cap \mathfrak{i}_{\sim} = \emptyset.$$

Given $\mathbf{x} = (x_1, \dots, x_d)$, we denote \mathbf{x}_i the vector having for components the $x_{i \in i}$, that is

$$\mathfrak{D} \supseteq \mathfrak{i} = \{i_1, \ldots, i_{|\mathfrak{i}|}\} \Rightarrow \boldsymbol{x}_{\mathfrak{i}} = (x_{i_1}, \ldots, x_{i_{|\mathfrak{i}|}}),$$

where |i| := Card(i). For instance

$$\int_{\mathcal{U}^{|\mathfrak{i}|}} f(\boldsymbol{x}) d\boldsymbol{x}_{\mathfrak{i}} = \int_{\mathcal{U}^{|\mathfrak{i}|}} f(x_1, \ldots, x_d) \prod_{i \in \mathfrak{i}} dx_i$$

and

$$\int_{\mathcal{U}^{d-|\mathfrak{i}|}} f(\boldsymbol{x}) d\boldsymbol{x}_{\mathfrak{i}_{\sim}} = \int_{\mathcal{U}^{d-|\mathfrak{i}|}} f(x_1, \ldots, x_d) \prod_{i \in \mathfrak{D}}^{i \notin \mathfrak{i}} dx_i,$$

▲ロト ▲ 湿 ト ▲ 茎 ト ▲ 茎 - 釣んぐ

Introduction	Monte Carlo Method	Mar
000000	000000000000000000000000000000000000000	00

Density Estimation

Sensitivity indices

Sobol-Hoeffding decomposition

Sobol-Hoeffding decomposition

Any $f \in L_2(\mathcal{U}^d)$ has a **unique hierarchical orthogonal decomposition** of the form

$$f(\mathbf{x}) = f(x_1, \dots, x_d) = f_0 + \sum_{i=1}^d f_i(x_i) + \sum_{i=1}^d \sum_{j=i+1}^d f_{i,j}(x_i, x_j) + \sum_{i=1}^d \sum_{j=i+1}^d f_{i,j,k}(x_i, x_j, x_k) + \dots + f_{1,\dots,d}(x_1, \dots, x_d).$$

Hierarchical: 1st order functionals $(f_i) \rightarrow 2$ nd order functionals $(f_{i,j}) \rightarrow 3$ rd order functionals $(f_{i,j,l}) \rightarrow \cdots \rightarrow d$ -th order functional $(f_{1,\dots,d})$.

Decomposition in a sum of 2^k functionals

Using ensemble notations:

$$f(\boldsymbol{x}) = \sum_{\mathfrak{i} \subseteq \mathfrak{D}} f_{\mathfrak{i}}(\boldsymbol{x}_{\mathfrak{i}}).$$

Introduction	Monte Carlo Method
000000	000000000000000000000000000000000000000

Density Estimation

Sensitivity indices

Sobol-Hoeffding decomposition

Sobol-Hoeffding decomposition

Any $f \in L_2(\mathcal{U}^d)$ has a **unique hierarchical orthogonal decomposition** of the form

$$f(\boldsymbol{x}) = \sum_{i \subseteq \mathfrak{D}} f_i(\boldsymbol{x}_i).$$

Orthogonal: the functionals if the S-H decomposition verify the following orthogonality relations:

$$\begin{split} &\int_{\mathcal{U}} f_i(\boldsymbol{x}_i) dx_j = 0, & \forall i \subseteq \mathfrak{D}, \ j \in i, \\ &\int_{\mathcal{U}^d} f_i(\boldsymbol{x}_i) f_j(\boldsymbol{x}_j) d\boldsymbol{x} = \langle f_i, f_j \rangle = 0, & \forall i, j \subseteq \mathfrak{D}, \ i \neq j. \end{split}$$

It follows the hierarchical construction

$$f_{\emptyset} = \int_{\mathcal{U}^{d}} f(\mathbf{x}) d\mathbf{x} = \langle f \rangle_{\emptyset_{\infty} = \mathfrak{D}}$$

$$f_{\{i\}} = \int_{\mathcal{U}^{d-1}} f(\mathbf{x}) d\mathbf{x}_{\{i\}_{\infty}} - f_{\emptyset} = \langle f \rangle_{\mathfrak{D} \setminus \{i\}} - f_{\emptyset} \qquad i \in \mathfrak{D}$$

$$f_{i} = \int_{\mathcal{U}^{|i_{\infty}|}} f(\mathbf{x}) d\mathbf{x}_{i_{\infty}} - \sum_{j \subseteq i} f_{j} = \langle f \rangle_{i_{\infty}} - \sum_{j \subseteq i} f_{j} \qquad i \in \mathfrak{D}, \ |i| \ge 2$$

< ロ > < 母 > < 臣 > < 臣 > < 臣 > < 臣 < つ < ぐ</p>

Introduction	Monte Carlo Method	Markov chain Monte Carlo	Density Estimation	Sensitivity indices
000000	00000000000000000	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Global sensitiv	ity analysis			

Parametric sensitivity analysis

Consider *x* as a set of *d* independent random parameters uniformly distributed on \mathcal{U}^d , and f(x) a model-output depending on these random parameters. It is assumes that *f* is a 2nd order random variable: $f \in L_2(\mathcal{U}^d)$. Thus, *f* has a unique S-H decomposition

$$f(\boldsymbol{x}) = \sum_{i \subseteq \mathfrak{D}} f_i(\boldsymbol{x}_i).$$

Further, the integrals of f with respect to i_{\sim} are in this context conditional expectations,

$$\mathbb{E}[f|\boldsymbol{x}_{i}] = \int_{\mathcal{U}^{|i_{\sim}|}} f(\boldsymbol{x}) d\boldsymbol{x}_{i_{\sim}} = g(\boldsymbol{x}_{i}) \quad \forall i \subseteq \mathfrak{D},$$

so the S-H decomposition follows the hierarchical structure

$$\begin{split} & f_{\emptyset} = \mathbb{E}\left[f\right] \\ & f_{\{i\}} = \mathbb{E}\left[f|\boldsymbol{x}_{\{i\}}\right] - \mathbb{E}\left[f\right] \\ & f_{i} = \mathbb{E}\left[f|\boldsymbol{x}_{i}\right] - \sum_{j \in i} f_{j} \\ \end{split} \qquad \qquad i \subseteq \mathfrak{D}, \ |i| \ge 2. \end{split}$$

Introduction	Monte Carlo Method	M
000000	00000000000000000	C

Density Estimation

Global sensitivity analysis

Variance decomposition

Because of the orthogonality of the S-H decomposition the variance $\mathbb{V}\left[f\right]$ of the model-output can be decomposed as

$$\mathbb{V}\left[f\right] = \sum_{i \subseteq \mathfrak{D}}^{i \neq \emptyset} \mathbb{V}\left[f_i\right], \quad \mathbb{V}\left[f_i\right] = \langle f_i, f_i \rangle.$$

 $\mathbb{V}[f_i]$ is interpreted as the contribution to the total variance $\mathbb{V}[f]$ of the interaction between parameters $x_{i \in i}$.

The S-H decomposition thus provide a rich mean of analyzing the respective contributions of individual or sets of parameters to model-output variability.

However, as there are $2^d - 1$ contributions, so one needs more "abstract" characterizations.

Introduction	Monte Carlo Method	Markov chain Monte Carlo	Density Estimation	Sensitivity indices
000000	000000000000000000000000000000000000000	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Global sensiti	vity analysis			

Sensitivity indices

To facilitate the hierarchization of the respective influence of each parameter x_i , the partial variances $\mathbb{V}[f_i]$ are normalized by $\mathbb{V}[f]$ to obtain the **sensitivity indices**:

$$S_{i}(f) = rac{\mathbb{V}[f_{i}]}{\mathbb{V}[f]} \leq 1, \quad \sum_{i \subseteq \mathfrak{D}}^{i \neq \emptyset} S_{i}(f) = 1.$$

The order of the sensitivity indices S_i is equal to |i| = Card(i).

1st order sensitivity indices. The *d* first order indices $S_{\{i\} \in \mathfrak{D}}$ characterize the fraction of the variance due the parameter x_i only, *i.e.* without any interaction with others. Therefore,

$$1 - \sum_{i=1}^{d} S_{\{i\}}(f) \ge 0,$$

measures globally the effect on the variability of all interactions between parameters. If $\sum_{i=1}^{d} S_{ii} = 1$, the model is said additive, because its S-H decomposition is

$$f(x_i,\ldots,x_d)=f_0+\sum_{i=1}^d f_i(x_i),$$

and the impact of the parameters can be studied separately.

Introduction	Monte Carlo Method	Markov chain Monte Carlo	Density Estimation	Sensitivity indices
Global sensitiv	vity analysis			
Sensitivit	v indices			

To facilitate the hierarchization of the respective influence of each parameter x_i , the partial variances $\mathbb{V}[f_i]$ are normalized by $\mathbb{V}[f]$ to obtain the **sensitivity indices**:

$$S_{\mathfrak{i}}(f) = rac{\mathbb{V}[f_{\mathfrak{i}}]}{\mathbb{V}[f]} \leq 1, \quad \sum_{\mathfrak{i} \subseteq \mathfrak{D}}^{\mathfrak{i}
eq \emptyset} S_{\mathfrak{i}}(f) = 1.$$

The order of the sensitivity indices S_i is equal to |i| = Card(i).

Total sensitivity indices. The first order SI $S_{\{i\}}$ measures the variability due to parameter x_i alone. The total SI $T_{\{i\}}$ measures the variability due to the parameter x_i , including all its interactions with other parameters:

$$\mathcal{T}_{\{i\}} := \sum_{\mathfrak{i} \ni i} S_{\mathfrak{i}} \ge S_{\{i\}}.$$

Important point: for x_i to be deemed non-important or non-influent on the model-output, $S_{\{i\}}$ and $T_{\{i\}}$ have to be negligible.

Observe that $\sum_{i \in \mathfrak{D}} \tilde{T}_{\{i\}} \ge 1$, the excess from 1 characterizes the presence of interactions in the model-output.

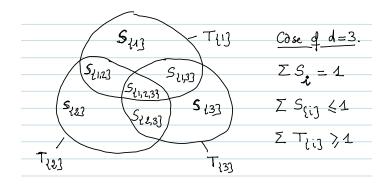
Introduction	Monte Carlo Method
000000	000000000000000000000000000000000000000

Density Estimation

Sensitivity indices

Global sensitivity analysis

Illustration



Introduction	Monte Carlo Method	Markov chain Monte Carlo	Density Estimation	Sensitivity indices
000000	000000000000000000000000000000000000000	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Global sensitiv	vity analysis			

Sensitivity indices

In many uncertainty problem, the set of uncertain parameters can be naturally grouped into subsets depending on the process each parameter accounts for. For instance, boundary conditions BC, material property φ , external forcing *F*, and \mathfrak{D} is the union of these distinct subsets:

$$\mathfrak{D} = \mathfrak{D}_{BC} \cup \mathfrak{D}_{\varphi} \cup \mathfrak{D}_{F}.$$

The notion of first order and total sensitivity indices can be extended to characterize the influence of the subsets of parameters. For instance,

$$S_{\mathfrak{D}_{\varphi}} = \sum_{\mathfrak{i} \subseteq \mathfrak{D}_{\varphi}} S_{\mathfrak{i}},$$

measures the fraction of variance induced by the material uncertainty alone, while

$$T_{\mathfrak{D}_F} = \sum_{\mathfrak{i} \cap \mathfrak{D}_F \neq \emptyset} S_{\mathfrak{i}}.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

measures the fraction of variance due to the external forcing uncertainty and all its interactions.

Introduction	Monte Carlo Method	Markov chain Monte Carlo	Density Estimation	
000000	000000000000000000000000000000000000000	0000000	0000000000	
Global sensitivity analysis				

Example

Let (ξ_1, ξ_2) be two independent centered, normalized random variables

$$\xi_i \sim N(0, 1), \quad i = 1, 2.$$

Consider the model-output $f : (\xi_1, \xi_2) \in \mathbb{R}^2 \mapsto \mathbb{R}$ given by

$$f(\xi_1,\xi_2) = (\mu_1 + \sigma_1\xi_1) + (\mu_2 + \sigma_2\xi_2).$$

- Determine the S-H decomposition of f
- 2 Compute the 1st order and total sensitivity indices of f
- 3 Comment

4 Repeat for
$$f(\xi_1, \xi_2) = (\mu_1 + \sigma_1 \xi_1) (\mu_2 + \sigma_2 \xi_2)$$
.

Introduction	Monte Carlo Method	Markov chain Monte Carlo	Density Estimation	Sensitivity indices
Global sensitiv	vity analysis			
Example				

$$f(\xi_1,\xi_2) = \mu_1 + \mu_2 + \sigma_1\xi_1 + \sigma_2\xi_2$$

• $\mathbb{E}[f] = (\mu_1 + \mu_2)$ • $\mathbb{E}[f|\xi_1] = (\mu_1 + \mu_2) + \sigma_1\xi_1$ • $\mathbb{E}[f|\xi_2] = (\mu_1 + \mu_2) + \sigma_2\xi_2$ • $\mathbb{E}[f|\xi_2] = (\mu_1 + \mu_2) + \sigma_2\xi_2$ • $\mathbb{E}[f|\xi_1, \xi_2] = f(\xi_1, \xi_2)$ • $\mathbb{E}[f|\xi_1, \xi_2] = f(\xi_1, \xi_2)$ • $f_{1,2}(\xi_1, \xi_1) = \mathbb{E}[f|\xi_1, \xi_2] - \mathbb{E}[f] - f_1(\xi_1) - f_2(\xi_2) = 0$ • Then, $\mathbb{V}[f] = \sigma_1^2 + \sigma_2^2$, so $S_1 = T_1 = \frac{\sigma_1^2}{\sigma_2^2 + \sigma_2^2}$ and $S_2 = T_2 = \frac{\sigma_2^2}{\sigma_2^2 + \sigma_2^2}$

シック・ 川 ・ 川 ・ 小川・ ・ 山・

• Comment: obvious case, as *f* is a linear (additive) model.

Introduction	Monte Carlo Method	Markov chain Monte Carlo	Density Estimation	Sensitivity indices
Global sensitiv	vity analysis			
Example				

$$\begin{array}{l} \mathbb{E}\left[f\right] = \mu_{1}\mu_{2} \\ \mathbb{E}\left[f\right] = \mu_{1}\mu_{2} \\ \mathbb{E}\left[f|\xi_{1}\right] = \mu_{1}\mu_{2} + \mu_{2}\sigma_{1}\xi_{1} \\ \mathbb{E}\left[f|\xi_{1}\right] = \mu_{1}\mu_{2} + \mu_{2}\sigma_{1}\xi_{1} \\ \mathbb{E}\left[f|\xi_{1}\right] = \mu_{1}\mu_{2} + \mu_{2}\sigma_{1}\xi_{1} \\ \mathbb{E}\left[f|\xi_{2}\right] = \mu_{1}\mu_{2} + \mu_{1}\sigma_{2}\xi_{2} \\ \mathbb{E}\left[f|\xi_{2}\right] = \mu_{1}\mu_{2} + \mu_{1}\sigma_{2}\xi_{2} \\ \mathbb{E}\left[f|\xi_{2}\right] = \mu_{1}\mu_{2} + \mu_{1}\sigma_{2}\xi_{2} \\ \mathbb{E}\left[f|\xi_{1},\xi_{2}\right] = f(\xi_{1},\xi_{2}) \\ \mathbb{E}\left[f|\xi_{1},\xi_{2}\right] = f(\xi_{1},\xi_{2}) \\ \mathbb{E}\left[f|\xi_{1},\xi_{2}\right] = f(\xi_{1},\xi_{2}) \\ \mathbb{E}\left[f|\xi_{1},\xi_{2}\right] - \mathbb{E}\left[f\right] - f_{1}(\xi_{1}) - f_{2}(\xi_{2}) = \sigma_{1}\sigma_{2}\xi_{1}\xi_{2} \\ \mathbb{E}\left[f|\xi_{1},\xi_{2}\right] = \mu_{1}^{2}\sigma_{2}^{2} + \mu_{2}^{2}\sigma_{1}^{2} + \sigma_{1}^{2}\sigma_{2}^{2}, \text{ so} \\ S_{1} = \frac{\mu_{2}^{2}\sigma_{1}^{2}}{\mu_{1}^{2}\sigma_{2}^{2} + \mu_{2}^{2}\sigma_{1}^{2} + \sigma_{1}^{2}\sigma_{2}^{2}} \\ T_{1} = \frac{\mu_{2}^{2}\sigma_{1}^{2} + \sigma_{1}\sigma_{2}}{\mu_{1}^{2}\sigma_{2}^{2} + \mu_{2}^{2}\sigma_{1}^{2} + \sigma_{1}^{2}\sigma_{2}^{2}} \text{ and } T_{2} = \frac{\mu_{1}^{2}\sigma_{2}^{2} + \sigma_{1}^{2}\sigma_{2}^{2}}{\mu_{1}^{2}\sigma_{2}^{2} + \sigma_{1}^{2}\sigma_{2}^{2}}, \end{array}$$

Comment: fraction of variance due to interactions is

$$\sigma_1^2 \sigma_2^2 / (\mu_1^2 \sigma_2^2 + \mu_2^2 \sigma_1^2 + \sigma_1^2 \sigma_2^2)$$

Introduction	Monte Carlo Method	Markov chain Monte Carlo	Density Estimation
000000	000000000000000000000000000000000000000	0000000	0000000000000

Sensitivity indices

Global sensitivity analysis Example

• Then,
$$\mathbb{V}[f] = \mu_1^f \sigma_2^2 + \mu_2^2 \sigma_1^2 + \sigma_1^2 \sigma_2^2 + \sigma_1^2 \sigma_2^2 + \sigma_1^2 \sigma_2^2 + \sigma_1^2 \sigma_2^2$$
, so

$$S_{1} = \frac{\mu_{2}^{2}\sigma_{1}^{2}}{\mu_{1}^{2}\sigma_{2}^{2} + \mu_{2}^{2}\sigma_{1}^{2} + \sigma_{1}^{2}\sigma_{2}^{2}} \text{ and } S_{2} = \frac{\mu_{1}^{2}\sigma_{2}^{2}}{\mu_{1}^{2}\sigma_{2}^{2} + \mu_{2}^{2}\sigma_{1}^{2} + \sigma_{1}^{2}\sigma_{2}^{2}},$$
$$T_{1} = \frac{\mu_{2}^{2}\sigma_{1}^{2} + \sigma_{1}\sigma_{2}}{\mu_{1}^{2}\sigma_{2}^{2} + \mu_{2}^{2}\sigma_{1}^{2} + \sigma_{1}^{2}\sigma_{2}^{2}} \text{ and } T_{2} = \frac{\mu_{1}^{2}\sigma_{2}^{2} + \sigma_{1}\sigma_{2}}{\mu_{1}^{2}\sigma_{2}^{2} + \mu_{2}^{2}\sigma_{1}^{2} + \sigma_{1}^{2}\sigma_{2}^{2}},$$

Comment: fraction of variance due to interactions is

$$\sigma_1^2 \sigma_2^2 / (\mu_1^2 \sigma_2^2 + \mu_2^2 \sigma_1^2 + \sigma_1^2 \sigma_2^2)$$

• Example: $(\mu_1, \sigma_1) = (1, 3)$ and $(\mu_2, \sigma_2) = (2, 2)$, so

$$S_1 = 9/19, \quad S_2 = 1/19, \quad S_{1,2} = 9/19.$$

One can draw the conclusions:

- ξ_1 is the most influential variable as $S_1 > S_2$ and $T_1 > T_2$.
- interactions are important as $1 S_1 S_2 = 9/19 \approx 0.5$, especially for ξ_2 for which $(T_2 S_2)/T_2 = 9/10 \approx 1$.

Markov chain Monte Carlo

Density Estimation

Sensitivity indices

Monte-Carlo estimation of the SI

1-st order sensitivity indices by Monte-Carlo sampling

The S_i can be computed by MC sampling as follow. Recall that

$$S_{\{i\}}(f) = \frac{\mathbb{V}\left[f_{\{i\}}\right]}{\mathbb{V}\left[f\right]} = \frac{\mathbb{V}\left[\mathbb{E}\left[f|x_i\right]\right]}{\mathbb{V}\left[f\right]} = \frac{\mathbb{E}\left[\mathbb{E}\left[f|x_i\right]^2\right] - \mathbb{E}\left[\mathbb{E}\left[f|x_i\right]\right]^2}{\mathbb{V}\left[f\right]}.$$

Observe: $\mathbb{E} [\mathbb{E} [f|x_i]] = \mathbb{E} [f]$. $\mathbb{E} [f]$ and $\mathbb{V} [f]$ can be **estimated using MC sampling**. Let $\chi_M = \{ \mathbf{x}^{(1)}, \dots, \mathbf{x}^{(M)} \}$ be a set of independent samples drawn uniformly in \mathcal{U}^d , the mean and variance estimators are:

$$\widehat{\mathbb{E}[f]} = \frac{1}{M} \sum_{l=1}^{M} f(\boldsymbol{x}^{(l)}), \quad \widehat{\mathbb{V}[f]} = \frac{1}{M-1} \sum_{l=1}^{M} f(\boldsymbol{x}^{(l)})^2 - \widehat{\mathbb{E}[f]}^2.$$

It now remains to compute the variance of conditional expectations, $\mathbb{V}\left[\mathbb{E}\left[f|\boldsymbol{x}_{\{i\}}\right]\right]$.

Markov chain Monte Carlo

Density Estimation

Sensitivity indices

Monte-Carlo estimation of the SI

Monte-Carlo estimator: variance of conditional expectation

Observe:

$$\begin{split} &\int_{\mathcal{U}^{d+|\mathbf{i}_{\sim}|}} f(\boldsymbol{x}_{i}, \boldsymbol{x}_{i_{\sim}}) f(\boldsymbol{x}_{i}, \boldsymbol{x}'_{i_{\sim}}) d\boldsymbol{x}_{i} d\boldsymbol{x}_{i_{\sim}} d\boldsymbol{x}_{i_{\sim}'} \\ &= \int_{\mathcal{U}^{|\mathbf{i}|}} d\boldsymbol{x}_{i} \int_{\mathcal{U}^{|\mathbf{i}_{\sim}|}} f(\boldsymbol{x}_{i}, \boldsymbol{x}_{i_{\sim}}) d\boldsymbol{x}_{i_{\sim}} \int_{\mathcal{U}^{|\mathbf{i}_{\sim}|}} f(\boldsymbol{x}_{i}, \boldsymbol{x}'_{i_{\sim}}) d\boldsymbol{x}'_{i_{\sim}} \\ &= \int_{\mathcal{U}^{|\mathbf{i}|}} d\boldsymbol{x}_{i} \left[\int_{\mathcal{U}^{|\mathbf{i}_{\sim}|}} f(\boldsymbol{x}_{i}, \boldsymbol{x}_{i_{\sim}}) d\boldsymbol{x}_{i_{\sim}} \right]^{2}. \end{split}$$

Markov chain Monte Carlo

Density Estimation

Sensitivity indices

Monte-Carlo estimation of the SI

Monte-Carlo estimator: variance of conditional expectation

Observe:

$$\begin{split} &\int_{\mathcal{U}^{d+|\mathbf{i}_{\sim}|}} f(\boldsymbol{x}_{i},\boldsymbol{x}_{i_{\sim}}) f(\boldsymbol{x}_{i},\boldsymbol{x}_{i_{\sim}}') d\boldsymbol{x}_{i} d\boldsymbol{x}_{i_{\sim}} d\boldsymbol{x}_{i_{\sim}'} \\ &= \int_{\mathcal{U}^{|\mathbf{i}|}} d\boldsymbol{x}_{i} \int_{\mathcal{U}^{|\mathbf{i}_{\sim}|}} f(\boldsymbol{x}_{i},\boldsymbol{x}_{i_{\sim}}) d\boldsymbol{x}_{i_{\sim}} \int_{\mathcal{U}^{|\mathbf{i}_{\sim}|}} f(\boldsymbol{x}_{i},\boldsymbol{x}_{i_{\sim}}') d\boldsymbol{x}_{i_{\sim}'} \\ &= \int_{\mathcal{U}^{|\mathbf{i}|}} d\boldsymbol{x}_{i} \left[\int_{\mathcal{U}^{|\mathbf{i}_{\sim}|}} f(\boldsymbol{x}_{i},\boldsymbol{x}_{i_{\sim}}) d\boldsymbol{x}_{i_{\sim}} \right]^{2}. \end{split}$$

$$\mathbb{V}\left[\mathbb{E}\left[f|\boldsymbol{x}_{\{i\}}\right]\right] = \mathbb{E}\left[\mathbb{E}\left[f|\boldsymbol{x}_{\{i\}}\right]^{2}\right] - \mathbb{E}\left[\mathbb{E}\left[f|\boldsymbol{x}_{\{i\}}\right]\right]^{2} = \mathbb{E}\left[\mathbb{E}\left[f|\boldsymbol{x}_{\{i\}}\right]^{2}\right] - \mathbb{E}\left[f\right]^{2}$$

Markov chain Monte Carlo

Density Estimation

Sensitivity indices

Monte-Carlo estimation of the SI

Monte-Carlo estimator: variance of conditional expectation

Observe:

$$\begin{split} &\int_{\mathcal{U}^{d+|\mathbf{i}_{\sim}|}} f(\boldsymbol{x}_{i}, \boldsymbol{x}_{i_{\sim}}) f(\boldsymbol{x}_{i}, \boldsymbol{x}_{i_{\sim}}') \mathrm{d}\boldsymbol{x}_{i} d\boldsymbol{x}_{i_{\sim}} d\boldsymbol{x}_{i_{\sim}'} \\ &= \int_{\mathcal{U}^{|\mathbf{i}|}} d\boldsymbol{x}_{i} \int_{\mathcal{U}^{|\mathbf{i}_{\sim}|}} f(\boldsymbol{x}_{i}, \boldsymbol{x}_{i_{\sim}}) d\boldsymbol{x}_{i_{\sim}} \int_{\mathcal{U}^{|\mathbf{i}_{\sim}|}} f(\boldsymbol{x}_{i}, \boldsymbol{x}_{i_{\sim}}') d\boldsymbol{x}_{i_{\sim}'} \\ &= \int_{\mathcal{U}^{|\mathbf{i}|}} d\boldsymbol{x}_{i} \left[\int_{\mathcal{U}^{|\mathbf{i}_{\sim}|}} f(\boldsymbol{x}_{i}, \boldsymbol{x}_{i_{\sim}}) d\boldsymbol{x}_{i_{\sim}} \right]^{2}. \end{split}$$

$$\mathbb{V}\left[\mathbb{E}\left[f|\boldsymbol{x}_{\{i\}}\right]\right] = \mathbb{E}\left[\mathbb{E}\left[f|\boldsymbol{x}_{\{i\}}\right]^{2}\right] - \mathbb{E}\left[\mathbb{E}\left[f|\boldsymbol{x}_{\{i\}}\right]\right]^{2} = \mathbb{E}\left[\mathbb{E}\left[f|\boldsymbol{x}_{\{i\}}\right]^{2}\right] - \mathbb{E}\left[f\right]^{2}$$
$$= \lim_{M \to \infty} \frac{1}{M} \sum_{l=1}^{M} f\left(\boldsymbol{x}_{\{i\}}^{(l)}, \boldsymbol{x}_{\{i\}}^{(l)}\right) f\left(\tilde{\boldsymbol{x}}_{\{i\}}^{(l)}, \boldsymbol{x}_{\{i\}}^{(l)}\right) - \mathbb{E}\left[f\right]^{2}$$
$$\left(\text{independent samples } \boldsymbol{x}_{\{i\}}^{(l)}, \tilde{\boldsymbol{x}}_{\{i\}}^{(l)} \text{ and } \boldsymbol{x}_{\{i\}}^{(k)}\right)$$

Markov chain Monte Carlo

Density Estimation

Sensitivity indices

Monte-Carlo estimation of the SI

Monte-Carlo estimators for 1st order SI $S_{\{i\}}$

- 1 Draw 2 independent sample sets, with size M, χ_M and $\tilde{\chi}_M$
- 2 Compute estimators $\widehat{\mathbb{E}[f]}$ and $\widehat{\mathbb{V}[f]}$ from χ_M (or $\tilde{\chi}_M$)

[M model evaluations]

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

3 For i = 1, 2, ..., d:

Estimate variance of conditional expectation through

$$\mathbb{V}\left[\widehat{\mathbb{E}\left[f|\boldsymbol{x}_{\{i\}}\right]}\right] = \frac{1}{M} \sum_{l=1}^{M} f\left(\boldsymbol{x}_{\{i\}}^{(l)}, \boldsymbol{x}_{\{i\}}^{(l)}\right) f\left(\tilde{\boldsymbol{x}}_{\{i\}}^{(l)}, \boldsymbol{x}_{\{i\}}^{(l)}\right) - \widehat{\mathbb{E}\left[f\right]}^{2}$$

[*M* new model evaluations at $(\tilde{\pmb{x}}_{\{i\}}^{(l)}, \pmb{x}_{\{i\}}^{(l)})$]

Estimator of the 1-st order SI:

$$\widehat{S_{\{i\}}(f)} = \frac{\mathbb{V}\left[\widehat{\mathbb{E}\left[f|\xi_{\{i\}}\right]}\right]}{\widehat{\mathbb{V}\left[f\right]}}$$

Requires $(d + 1) \times M$ model evaluations.

Introduction	Monte Carlo Method
000000	000000000000000000000000000000000000000

Density Estimation

Sensitivity indices

Monte-Carlo estimation of the SI

$$\mathbb{X}_{M} : \begin{bmatrix} x_{1}^{(1)} & \cdots & x_{j}^{(1)} & \cdots & x_{d}^{(1)} \\ \vdots & & & \vdots \\ x_{1}^{(i)} & \cdots & x_{l}^{(i)} & \cdots & x_{d}^{(i)} \\ \vdots & & & \vdots \\ x_{1}^{(M)} & \cdots & x_{l}^{(M)} & \cdots & x_{d}^{(M)} \end{bmatrix} \qquad \tilde{\mathbb{X}}_{M} : \begin{bmatrix} \bar{x}_{1}^{(1)} & \cdots & \bar{x}_{l}^{(1)} & \cdots & \bar{x}_{d}^{(1)} \\ \vdots & & & \vdots \\ \bar{x}_{1}^{(i)} & \cdots & \bar{x}_{l}^{(M)} & \cdots & \bar{x}_{d}^{(M)} \end{bmatrix} \\ \tilde{\mathbb{X}}_{M} : \begin{bmatrix} \bar{x}_{1}^{(1)} & \cdots & \bar{x}_{l}^{(i)} & \cdots & \bar{x}_{d}^{(i)} \\ \vdots & & & \vdots \\ \bar{x}_{1}^{(M)} & \cdots & \bar{x}_{l}^{(M)} & \cdots & \bar{x}_{d}^{(I)} \\ \vdots & & \vdots & & \vdots \\ \bar{x}_{1}^{(i)} & \cdots & x_{l}^{(i)} & \cdots & \bar{x}_{d}^{(i)} \\ \vdots & & \vdots & & \vdots \\ \bar{x}_{1}^{(i)} & \cdots & x_{l}^{(i)} & \cdots & \bar{x}_{d}^{(i)} \\ \vdots & & \vdots & & \vdots \\ \bar{x}_{1}^{(i)} & \cdots & x_{l}^{(i)} & \cdots & \bar{x}_{d}^{(i)} \end{bmatrix} \\ \mathbb{V} \left[\mathbb{E} \left[f | \mathbf{x}_{\{i\}} \right] \right] \approx \frac{1}{M} \sum_{l=1}^{M} f(\mathbf{x}_{\{i\}} , \mathbf{x}_{\{i\}}) f(\tilde{\mathbf{x}}_{\{i\}} , \mathbf{x}_{\{i\}}) f(\tilde{\mathbf{x}}_{\{i\}} , \mathbf{x}_{\{i\}}) - \left(\frac{1}{M} \sum_{l=1}^{M} f(\mathbf{x}_{\{i\}} , \mathbf{x}_{\{i\}} , \mathbf{x}_{\{i\}}) \right)^{2} .$$

Markov chain Monte Carlo

Density Estimation

Sensitivity indices

Monte-Carlo estimation of the SI

Total sensitivity indices by Monte-Carlo sampling

The $T_{\{i\}}$ can be computed by MC sampling as follow. Recall that

$$T_{\{i\}}(f) = \sum_{i \in \{i\}} S_i(f) = 1 - \sum_{i \subseteq \mathfrak{D} \setminus \{i\}} S_i(f) = 1 - \frac{\mathbb{V}\left[\mathbb{E}\left[f | \boldsymbol{x}_{\{i\}} \right]\right]}{\mathbb{V}[f]}.$$

As for $\mathbb{V}\left[\mathbb{E}\left[f|\mathbf{x}_{\{i\}}\right]\right]$, we can derive the following Monte-Carlo estimator for $\mathbb{V}\left[\mathbb{E}\left[f|\mathbf{x}_{\{i\}}\right]\right]$, using the two independent sample sets χ_M and $\tilde{\chi}_M$

$$\mathbb{V}\left[\mathbb{E}\left[\widehat{f|\boldsymbol{x}_{\{i\}}}_{\sim}\right]\right] = \frac{1}{M} \sum_{l=1}^{M} f\left(\boldsymbol{x}_{\{i\}}^{(l)}, \boldsymbol{x}_{\{i\}}^{(l)}\right) f\left(\boldsymbol{x}_{\{i\}}^{(l)}, \tilde{\boldsymbol{x}}_{\{i\}}^{(l)}\right) - \mathbb{E}\left[f\right]^{2}$$

so finally

$$\widehat{\mathcal{T}_{\{i\}}(f)} = 1 - \frac{1}{\widehat{\mathbb{V}[f]}} \left(\frac{1}{M} \sum_{l=1}^{M} f\left(\mathbf{x}_{\{i\}}^{(l)}, \mathbf{x}_{\{i\}}^{(l)} \right) f\left(\mathbf{x}_{\{i\}}^{(l)}, \tilde{\mathbf{x}}_{\{i\}}^{(l)} \right) - \mathbb{E}\left[f \right]^2 \right)$$

The MC estimation of the $T_{\{i\}}$ needs $d \times M$ additional model evaluations.

Introduction	Monte Carlo Method
000000	000000000000000000000000000000000000000

Density Estimation

Sensitivity indices

Monte-Carlo estimation of the SI

$$\mathbb{X}_{M} : \begin{bmatrix} x_{1}^{(1)} & \dots & x_{j}^{(1)} & \dots & x_{d}^{(1)} \\ \vdots & & & \vdots \\ x_{1}^{(j)} & \dots & x_{j}^{(j)} & \dots & x_{d}^{(j)} \\ \vdots & & & & \vdots \\ x_{1}^{(M)} & \dots & x_{i}^{(M)} & \dots & x_{d}^{(M)} \end{bmatrix} \qquad \tilde{\mathbb{X}}_{M} : \begin{bmatrix} \bar{x}_{1}^{(1)} & \dots & \bar{x}_{i}^{(1)} & \dots & \bar{x}_{d}^{(1)} \\ \vdots & & & \vdots \\ \bar{x}_{1}^{(M)} & \dots & \bar{x}_{i}^{(M)} & \dots & x_{d}^{(M)} \end{bmatrix} \\ \tilde{\mathbb{X}}_{M} : \begin{bmatrix} x_{1}^{(1)} & \dots & \bar{x}_{i}^{(j)} & \dots & \bar{x}_{d}^{(j)} \\ \vdots & & & \vdots \\ \bar{x}_{1}^{(M)} & \dots & \bar{x}_{i}^{(M)} & \dots & \bar{x}_{d}^{(M)} \end{bmatrix} \\ \tilde{\mathbb{X}}_{M}^{(1)} : \begin{bmatrix} x_{1}^{(1)} & \dots & \bar{x}_{i}^{(1)} & \dots & \bar{x}_{d}^{(1)} \\ \vdots & & \vdots & & \vdots \\ x_{1}^{(j)} & \dots & \bar{x}_{i}^{(j)} & \dots & x_{d}^{(j)} \\ \vdots & & & \vdots \\ x_{1}^{(M)} & \dots & \bar{x}_{i}^{(M)} & \dots & x_{d}^{(M)} \end{bmatrix} \\ \mathbb{V} \left[\mathbb{E} \left[f | \mathbf{x}_{\{i\}} \right] \right] \approx \frac{1}{M} \sum_{l=1}^{M} f(\mathbf{x}_{\{i\}\sim}, \mathbf{x}_{\{i\}\sim}) f(\mathbf{x}_{\{i\}\sim}, \bar{\mathbf{x}}_{\{i\}\sim}) - \left(\frac{1}{M} \sum_{l=1}^{M} f(\mathbf{x}_{\{i\}\sim}, \mathbf{x}_{\{i\}\sim}) \right)^{2}.$$

Introduction	Monte Carlo Method	Markov chain Monte Carlo	Density Estimation	Sensitivity indices		
000000	000000000000000000000000000000000000000	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000		
Monte-Carlo estimation of the SI						

Epidemic model

The system is governed by the set of ODEs*:

$$\dot{S}(t) = -\tau(t)S(t)[I(t) + U(t)],$$
(1)

$$\dot{I}(t) = \tau(t)S(t)\left[I(t) + U(t)\right] - \nu I(t),$$
(2)

$$\dot{R}(t) = \nu_1 I(t) - \eta U(t), \tag{3}$$

$$\dot{U}(t) = \nu_2 I(t) - \eta R(t), \tag{4}$$

$$\dot{D}(t) = \nu_1 I(t) - D(t).$$
 (5)

The parameters are the **transmission rate** $\tau(t) > 0$, the average **infectious times** for the asymptomatic individuals ($\nu^{-1} > 0$) and unreported symptomatic ($\eta^{-1} > 0$), and the fraction $f \in (0, 1)$ that fixes the rates of asymptomatic individuals that become symptomatic and reported ($\nu_1 = f\nu$) or symptomatic and unreported ($\nu_2 = (1 - f)\nu$). The transmission rate τ is expressed as

$$\tau(t) = \begin{cases} \tau_0, & t < N_c, \\ \tau_0 \exp[-\mu(t - N_c)], & t \ge N_c, \end{cases}$$
(6)

where μ and N_c are uncertain.

A priori range (other parameters are not free):

	f	ν^{-1}	η^{-1}	μ	N _c
Nominal values	0.1 or 0.6	7 [days]	7 [day]	0.032	7 [day]
Uncertainty ranges	±10%	\pm 1 [day]	\pm 1 [day]	±10%	±1 [day]

Webb, Predicting the number of reported and unreported cases for the covid-19 epidemic in

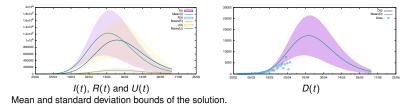
Markov chain Monte Carlo

Density Estimation

Sensitivity indices

Monte-Carlo estimation of the SI

Low f (0.1 \pm 10%) - PSP Method, 351 simulations



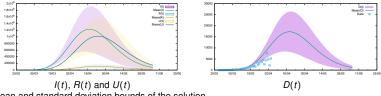
Markov chain Monte Carlo

Density Estimation

Sensitivity indices

Monte-Carlo estimation of the SI

Low f (0.1 \pm 10%) - PSP Method, 351 simulations



Mean and standard deviation bounds of the solution

Sobol-Hoeffding's decomposition:

$$U(\boldsymbol{\xi}) = U(\xi_1, \dots, \xi_N) = \sum_i U_{\{i\}}(\xi_i) + \sum_{i,j>i} U_{\{i,j\}}(\xi_i, \xi_j) + \sum_{i,j>i,k>j} U_{\{i,j,k\}}(\xi_i, \xi_j, \xi_k) \dots$$

Therefore, the decomposition of the variance

$$\mathbb{V}[U] = \sum_{i} \mathbb{V}[U_{\{i\}}] + \sum_{i,j>i} \mathbb{V}[U_{\{i,j\}}] + \sum_{i,j>i,k>j} \mathbb{V}[U_{\{i,j,k\}}] \dots$$

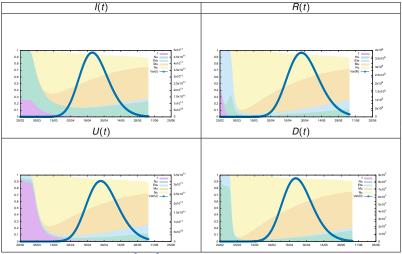
Markov chain Monte Carlo

Density Estimation

Sensitivity indices

Monte-Carlo estimation of the SI

Low f (0.1 \pm 10%)



First order sensitivity indices: $\mathbb{V}\left[U_{\{i\}}\right]/\mathbb{V}\left[U\right]$.

Markov chain Monte Carlo

Density Estimation

Sensitivity indices

Monte-Carlo estimation of the SI

MC estimation of 1st order and total sensitivity indices

- requires $M \times (2d + 1)$ simulations
- convergence of estimators in $\mathcal{O}(1/\sqrt{M})$
- slow convergence, but d-independent
- convergence not related to smoothness of f

